Maternal TET3 is dispensable for embryonic development but is required for neonatal growth

نویسندگان

  • Yu-ichi Tsukada
  • Tomohiko Akiyama
  • Keiichi I. Nakayama
چکیده

The development of multicellular organisms is accompanied by reprogramming of the epigenome in specific cells, with the epigenome of most cell types becoming fixed after differentiation. Genome-wide reprogramming of DNA methylation occurs in primordial germ cells and in fertilized eggs during mammalian embryogenesis. The 5-methylcytosine (5mC) content of DNA thus undergoes a marked decrease in the paternal pronucleus of mammalian zygotes. This loss of DNA methylation has been thought to be mediated by an active demethylation mechanism independent of replication and to be required for development. TET3-mediated sequential oxidation of 5mC has recently been shown to contribute to the genome-wide loss of 5mC in the paternal pronucleus of mouse zygotes. We now show that TET3 localizes not only to the paternal pronucleus but also to the maternal pronucleus and oxidizes both paternal and maternal DNA in mouse zygotes, although these phenomena are less pronounced in the female pronucleus. Genetic ablation of TET3 in oocytes had no significant effect on oocyte development, maturation, or fertilization or on pregnancy, but it resulted in neonatal sublethality. Our results thus indicate that zygotic 5mC oxidation mediated by maternal TET3 is required for neonatal growth but is not essential for development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Haploinsufficiency, but not defective paternal 5mC oxidation, accounts for the developmental defects of maternal Tet3 knockouts.

Paternal DNA demethylation in mammalian zygotes is achieved through Tet3-mediated iterative oxidation of 5-methylcytosine (5mC) coupled with replication-dependent dilution. Tet3-mediated paternal DNA demethylation is believed to play important roles in mouse development given that Tet3 heterozygous embryos derived from Tet3-deficient oocytes exhibit embryonic sublethality. Here, we demonstrate ...

متن کامل

O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development

Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...

متن کامل

Stella preserves maternal chromosome integrity by inhibiting 5hmC-induced γH2AX accumulation.

In the mouse zygote, Stella/PGC7 protects 5-methylcytosine (5mC) of the maternal genome from Tet3-mediated oxidation to 5-hydroxymethylcytosine (5hmC). Although ablation of Stella causes early embryonic lethality, the underlying molecular mechanisms remain unknown. In this study, we report impaired DNA replication and abnormal chromosome segregation (ACS) of maternal chromosomes in Stella-null ...

متن کامل

Effect of maternal fluoxetine exposure on lung, heart and kidney development in rat neonates

Objective(s): Depression during pregnancy negatively affects fetal development. Fluoxetine as a selective serotonin reuptake inhibitor (SSRIs) is used for treatment of gestational depression. This study is trying to determine the effects of fluoxetine on the renal, heart and lung development.Materials and Methods: Fifteen pregnant rats were treated with fluoxetine at 7 mg/kg from days 0 to 21 o...

متن کامل

Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes.

With the exception of imprinted genes and certain repeats, DNA methylation is globally erased during preimplantation development. Recent studies have suggested that Tet3-mediated oxidation of 5-methylcytosine (5mC) and DNA replication-dependent dilution both contribute to global paternal DNA demethylation, but demethylation of the maternal genome occurs via replication. Here we present genome-s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015